The Mathematics of RSA

Michael Hoefler

November 2022

Contents
1 Introduction
2 Asymmetric Cryptography

3 The RSA Algorithm
3.1 Correctness of the Algorithm
3.1.1 Euler’s Totient Function
3.1.2 Modular Multiplicative Inverses
3.1.3 Bezout’sIdentity
3.1.4 Existence of Inverses Modulon
3.1.5 Euler’'s Theorem
3.2 Exampleo

4 Conclusions

1 Introduction

In our current day and age, cryptography and privacy are increasingly important
matters. With an ever-increasing number of cyber-criminals looking to intercept
sensitive data, we must ensure that our encryption schemes are up to par. But
with quantum technology quickly evolving, many of our classic mathematical
techniques in cryptography are under threat. In the following discussion we
will inspect the mathematics behind the most common encryption mechanism:
RSA.

2 Asymmetric Cryptography

Before we start discussing RSA, we must first understand Symmetric and Asym-
metric Cryptography. Up until the late 20th century, cryptography consisted

solely of symmetric algorithms.

Definition: Symmetric Cryptography
J J [})

Symmetric Cryptography uses the same key to encrypt and decrypt mes-
sages. Suppose k is a secret key, M is a message, C' is the ciphertext,

and F and D are encryption and decryption functions, respectively.
E(M,k)=C

D(C,k) =M

To put this definition into perspective, consider the Caeser cipher, which
takes letters of the alphabet and shifts them according to a key. The k = 13
case is a popular example, since applying the shift twice decrypts the message.
So essentially £ = D for this algorithm, and it is often referred to as ROT13.

Clearly ROT13 is not a safe or secure encryption scheme, but there are
many widely used symmetric algorithms. Several of these include AES, DES,
and Blowfish. While these are very interesting examples, we will focus our

discussion on Asymmetric cryptography.

Definition: Asymmetric Cryptography

Rather than using one secret key, Asymmetric Cryptography uses a pair
of related keys for encryption and decryption. If we suppose F is an
encryption method which uses some public key e, and D is a decryp-
tion method which uses a private key, d, we should have the following

properties.

Also, E and D should be easy to compute, but revealing e should not

disclose an easy way to compute d.

So what gives an asymmetric scheme an advantage over a symmetric scheme?
If a user wants to communicate with lots of third-parties using a symmetric
scheme, the user would need to have a separate key for every single communi-
cation (otherwise, one recipient could decrypt another recipient’s communica-
tions). For large corporations like banks, the amount of keys to keep track of

quickly gets out of hand.

With asymmetric encryption, the corporation can have one ”public key”
which they distribute to every client they want to talk to. The clients can use
this key to encrypt their communications, and the bank uses their ”private key”
to decrypt them. With asymmetric encryption, each party only needs one key-

pair to communicate securely!

Another advantage of asymmetric cryptography is digital signatures. If Al-
ice wants to send a verified message, M, they can simply pass it into their
decryption function, D. When Bob receives D(M), they can use Alice’s public
encryption function, F, to recover the message: E(D(M)) = M. Since Bob can
be sure that no one else could have used Alice’s decryption function to generate

D(M), Bob can be sure that the message really came from Alice!

Now that we understand the rationale of asymmetric cryptography, it is time

to look at a real example: RSA!

3 The RSA Algorithm

RSA [1] is named after its three creators, R. Rivest, A. Shamir, and L. Adleman,
who came up with the method in 1977.

Figure 1: Shamir, Rivest, and Adlemen in 1977

The RSA algorithm uses modular math and number theory to achieve the

goals of the asymmetric encryption scheme. The algorithm works as follows.

The RSA Algorithm

1. First, pick two large distinct primes p and gq.

2. Compute n=p-q, and ¢ = (p— 1)(g — 1).

3. Choose e such that 1 < e < ¢ and ged(e, ¢) = 1.

4. Compute d where e-d =1 (mod ¢)

5. Then (e, n) is the public key, and (d,n) is the private key.

6. To encrypt a message, m, the user computes ¢ = m¢ (mod n).

7. To decrypt a message, ¢, the user computes m = ¢? (mod n).

3.1 Correctness of the Algorithm

We will start off by showing that this method is correct.

3.1.1 Euler’s Totient Function

You can see ¢ showing up multiple times in the algorithm. This is actually

Euler’s totient function evaluated at n.

Euler’s Totient Function

We define ¢ : N — N as follows.
d(n) =#{1 <m < n:ged(m,n) =1}

The # symbol denotes the number of elements in the set. Note that by
definition ¢(p) = p — 1 when p is a prime.

In step 2, we calculate ¢(n) by taking (p — 1) - (¢ — 1). This comes directly

from the following result.

Theorem: Multiplicity of Euler’s Totient Function

Suppose we have p,q which are distinct prime numbers. Then we have

the following.
o(pa) = ¢(p)o(q) = (p—1)(¢ — 1)

Proof: Notice that ¢(pg) is the number of elements in the following set

which are relatively prime to pq.

17 27 Ty b,
p+1> p+27 2p7
(¢=Vp+1, (¢—=Lp+2, - qp

The elements in the set which are not relatively prime to n (not including

n itself) are in the following sets.

Q:{q72(I73Qa 7(]9_1)(]}

We will show that these sets are disjoint. Suppose a € PN . Thus a € P
and a € Q. Therefore a = jp = kq where j, k € Z. By Euclid’s Lemma, pla
implies p|k or p|q. Clearly p1 ¢ (since p and ¢ are distinct primes), so p|k. But
0 < k < p, so this is a contradiction. The sets P and @ must be disjoint.

So clearly ¢(n) = pg — (|Q| + |P|) — 1. Note that the extra —1 is accounting

for n itself not being counted in @ or P.

¢(n)=pg—(p—-1+q¢—-1)—-1
=pg—p—q+1
={@-1(g—-1) =ope(q)

Therefore ¢(n) is multiplicative over the product of two distinct primes.

3.1.2 Modular Multiplicative Inverses

In step 4 of the RSA Algorithm, we choose d such that e -d = 1 (mod ¢(n)).
We will show that such a d exists and is unique.

3.1.3 Bezout’s Identity

Before we can prove d exists, we must show an important result relating linear

combinations and greatest common divisors - Bezout’s Identity.
Theorem: Bezout’s Identity

Suppose a,b € Z. Then dx,y € Z s.t.

ax + by = ged(a,b)

Proof: Suppose a,b € Z with g = ged(a,b). Notice that by definition gla
and g|b. Thus a = gag and b = gby where ag,by € Z. So we get the following
where z,y € Z.

ax + by = gaga + gbob = g(aga + byd)

Therefore g|(az+by) — ax+by = 1-gcd(a, b) where | € Z. Now consider the
set S = {ax+by|z,y € Z,ax+by > 0}. Notice that a+b € S, so S # &. By the
Well-Ordering Principle, this set has a smallest element, d. Suppose B.W.O.C.

that d f a. So by the division algorithm, 3¢, € Z s.t. a =dg+r and 0 < r < d.
Now notice that dg = g(axzo + byg) = a — r. But then r = a(1 — gzo) — b(qyo).
Sor €S and r < d, and d was chosen as the minimum element in S, so this is
a contradiction. WLOG we also have d|b.

Finally, suppose we have ¢ € Ns.t. c|a and ¢|b. Clearly this implies ¢|(ax+by)
for all z,y € Z, including x = zg and y = yo. Thus c|(azg + bxg) — c|d.
Therefore d is the greatest common divisor of a and b.

3.1.4 Existence of Inverses Modulo n

Now we will show the result which allows us to pick d such that e -d =
1 (mod ¢(n)) when ged(e, p(n)) = 1.

Theorem: Existence of Modular Multiplicative Inverses

Let a,n € N. Then gcd(a,n) = 1 iff there exists a~! € Z which we call

the modular multiplicative inverse of a.

a-a"!' =1 (mod n)

Proof: Suppose a,n € Z s.t. ged(a,n) = 1. By Bezout’s Lemma, we must
have x,y € Z with the following property.
ax + ny = ged(a,n) =1

Taking this whole relation modulo n, we get the following.

ax +ny = ax =1 (mod n)

Therefore 2 = a~'. Now suppose we have an inverse of a.

a-a"' =1 (mod n)
Thus n|(a-a=!t —1). So 3k € Z s.t. a-a~! —1 = nk. We can rearrange this
into a nicer form.
a-a”t4n(-k) =1

Notice that since we have a linear combination of a and n, this must be some

multiple, [€ Z, of gcd(a,n) by Beozout’s Lemma.

l-ged(a,n) =1

Since we are concerned with positive integers a and n here, we see that [= 1,
and thus ged(a,n) = 1. Finally, suppose that ay = 1 (mod n) but y # a~!. But

1 1

ay=a-a " (mod n) — y=a* (mod n). So clearly, the multiplicative inverse

must be unique. And this is an important property for a cryptographic private
key.
3.1.5 Euler’s Theorem

We have shown that steps (1)-(5) work out. Now it is only left to show that

(m®)? =me? =m (mod n).
Euler’s Theorem

Suppose ged(a,n) = 1. Then we have the following relationship.

a®™ =1 (mod n)

Proof: Consider the set of numbers k& less than n which are relatively

prime to n. By definition, there will be ¢(n) of them.

K = {ktha' o akqﬁ(n)}

Now suppose a € K. Notice that a - k; will be a member of K since
both a and k; are relatively prime to n (for any). Thus it is clear that
aK = {aky,aks, - ,akgmy} (mod n) is a permutation of K. This leads to
the following fact.

d(n é(n

))
ki = H aki
i=1

i=1

Reducing modulo n and factoring out a, we get the following.

#(n é(n)

)
ki = a®™) H k; (mod n)
i=1 i=1
Finally, since the products will be relatively prime with n, they will have
modular multiplicative inverses (from the previous result). Therefore we can

essentially cancel them out, to yield the final result: a®™ =1 (mod n).

3.2 Example

It is easy to create a basic example in Python. The following short script
successfully generates an RSA key-pair according to the algorithm, and en-

crypts/decrypts a message.

from Crypto.Util.number import long_to_bytes, bytes_to_long

from Crypto.Util.number import getStrongPrime, inverse

step 1: generate our primes p and ¢

p
q

getStrongPrime (512)

getStrongPrime (512)

step 2: calculate n = p * g and pht(n)
phi = (p - 1) * (q - 1)
n=p*gq

step 3: choose an e less than phi and relatively prime to n
this wvalue is a commonly chosen as the public exponent
e = 65537

step 4: calculate d as the inverse of e modulo pht(n)

d = inverse(e, phi)
step 5: declare the public and private keys
print (£" [+] Public Key: ({n}, {e})\n")

print(£"[+] Private Key: ({n}, {d})\n")

step 6: perform encryption and decryption

=]
]

bytes_to_long(b"This is a secret message!")

c = m-e (mod n)

¢ = pow(m, e, n)

print(£" [+] Encrypted Message in Hex: {hex(c)}")

always holds due to euler's theorem :)

assert(m == pow(c, d, n))

Here is some sample output from the script. We can see the (rather large)

keypairs and the result of the encryption.

[+] Public Key: (137636178308258524865973987271282171307145802466330554433
69048144428330337413531876737183125869090259322719429722910469490252010000
44702889270269449753257261133966491783659307105182576062963823359818093111
04053409756125861943080936864666062490557602741227836027765864869847453152
9901748035068057055255689111541, 65537)

[+] Private Key: (13763617830825852486597398727128217130714580246633055443
36904814442833033741353187673718312586909025932271942972291046949025201000
04470288927026944975325726113396649178365930710518257606296382335981809311
10405340975612586194308093686466606249055760274122783602776586486984745315
2990174803506805705525589111541, 79865819687882622673117853455904141059850
88914646817301003731203510459349703208931449995225501253238198020922424471
09639203493733779391888186201335194876351373034043472215649239108314339831
82637994658164274979113543601465959552931442199877394789015811835953808090
530473839991327519431261907574433915885826077)

[+] Encrypted Message in Hex: 0x69a78c5ad991377db7fel6c9d2d81deadfd600adl4
88£58d14cabb3cf8448562441c74c9228ad768e9f2d5cdfadeb052ba697109a95667392eaa
ccd1ae825dbce00515bd64c2e60e4186547e68887204866d£523150d9d06c74609ba609302
3a50169d4d9d081713dd62070763adc12ac11834ca86£025b68adc4447e27e7b0e

For computers, storing numbers in base 10 is not always practical. Since
computers use binary (base-2) at the lowest level, it becomes more convenient
to use bases which are powers of 2. This is why hexadecimal and base-64 are so
common in computing (plus, they also take less bytes to store larger numbers).
For example, my public GPG key is below. As you can see, it is stored in base-
64. This is what you could use if you wanted to send me an encrypted (and/or
signed) email. Since it uses 2048 bit keys, it should be secure for the time being.

Good luck factoring this n!

10

mQENBGOIPe4BCADP5W5CcULozcP3XRXf IfXdYd3EI3k0Gtse370hfAzoxg+uxubF
1adGltgsHMZrNFk5M7uUCw90+Bf CO4aTokWxtACx1IfFRRmsDJqv/rGoAaelylcC
QugA+gyEN3uyZjnHsalmR1Z11agbBm4JwPkgXGmJiOROvddolSmvg90b8 jmHfHOT
gUp/iBbB3RUXV/tIMtF9Jaynvwuw6icl00wII1tZY4300UfoH9929mYSjLLgXd9m
00KUs0dylxBi24kbfJTISp/gfuur7SS3i+Gh3XtMX4A/Ly7ycoLdGQhl4Fc+gdel
8tFQbEHkRWBnoYSmHywbeXwwNFgQO0ec3YaJPABEBAAGOJO1pY2hhZWwgSG91Zmx1
ciA8aG91Zmx1lcjIwMDJAZ21haWwuY29tPokBVAQTAQgAPhYhBHI2hn9y+XNg6Ktr
zxV6sA1uV6q8BQJ jiD3uAhsDBQkA7U4ABQs JCAcCBhUKCQgLAgQWAgMBAh4BAheA
AAoJEBV6sA1uV6q8wG8IAKXGYIalVDN1aWYDOpOudEuAEdcbR j+hpcFBpHtX2SpR
1x3pif6k1C+XvWNuiiJ48In75DuvZicnrR2UijUrlFnyZJF8ZHYS91Rx5ZWjPbL5
wBmU8c/PiIGkhW7InfE1IMg4twor3JgSQsG8IOEDsM1JasSW/sjtxbCK/kj7z0EDs
4DdkCMTXuBQSmLYEhs5qocaZZIKNs j19I8zX/JEx jRYw1lUuQKxQ9K9U/DyCTClmp
dADwyH51reH/f1HPWn+mo8beA+WReobmmAmHt JzVscbXbau8QBoanV+z3Ar+tCpl
/Xp3UbX80iBnIEDvQ8Dp6K j1L2TbgM+pEM6nLK5qkuS5AQ0EY4g97gEIALPov/D+
asw4M3uzq8M/TZncX+gNr54RInPalHMW+xm2Sj/HyX0Bbb43dk1Mr/gt59ZgBeUh
Wx0qGxVq9h0AxBrs97wiTIDxQoXue2IN9EHNQNoO60NUFNM3cHXXaowhxW/kn3UC
D86ZCi4Dsy96hVzyRJIxnaJ1K0tpPyQah8Lf/n011ZaeJ2i60zvxKdAQwFHWQtAAa
1G3zNnTWsUyworHf AVyLgvbVAaRBogmb jKXS3v+86+GAZzkQidICAXEWE2INIfbc
FqC9c+QXsdrl5rBBFWraooq7sFw2ez03X80NKf sMx7Ht gUu+vX1Np4xyN/r6ebgg
zQgBhHVdrarLVhEAEQEAAYKBPAQYAQgAJhYhBHI2hn9y+XNg6KtrzxV6sA1uV6q8
BQJjiD3uAhsMBQkA7U4AAA0JEBV6sA1uV6q8S+QH/ j74419DJkYqpxVhdowWemlo
1jIGvIDV8JIhLT8Im14phIAcIzUFMB+QwVTPH/MN4+6Wnpd70gIDeGB6DwAaOhSpx
Zhvh4Z0I/SIWYit60DxbnSfL3+GQmTnM0AxqzI1fUbmubprWxpJZ1PSZep3T//KP
A46TqiRRBG7KTg3+S+9IzLbexckb5zL36urgi3pRpDABhpTpeQdpOqasoiZVEtq4J
AiD11YE/wMp+£7GifuxT4E1Zk0DDwpC72yBC1bPsxFHFRnpuOGEg5ISBTzwSz2CF
8La(BMaNda+94FkOBV81Afp1fCUbZ35eTz(6T23wkkviWGio34BVI5JwzE/yp6CQ=
=83s3

11

4 Conclusions

We have shown the correctness of the popular RSA cryptosystem and have
explored some of the number theory lying behind the algorithm. Due to recent
advances in Quantum computing, this method might not be around for much
longer. Either way, it offers a very interesting application for number theory

concepts, which will be explored for years to come.

References

[1] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2):120-126, 1978.

12

	Introduction
	Asymmetric Cryptography
	The RSA Algorithm
	Correctness of the Algorithm
	Euler's Totient Function
	Modular Multiplicative Inverses
	Bezout's Identity
	Existence of Inverses Modulo n
	Euler's Theorem

	Example

	Conclusions

